A theoretical investigation of several model selection criteria for dimensionality reduction

نویسندگان

  • Shikui Tu
  • Lei Xu
چکیده

Based on the problem of determining the hidden dimensionality (or the number of latent factors) of Factor Analysis (FA) model, this paper provides a theoretic comparison on several classical model selection criteria, including Akaike’s Information Criterion (AIC), Bozdogan’s Consistent Akaike’s Information Criterion (CAIC), Hannan–Quinn information criterion (HQC), Schwarz’s Bayesian Information Criterion (BIC). We focus on building up a partial order of the relative underestimation tendency. The order is shown to be AIC, HQC, BIC, and CAIC, indicating the underestimation probabilities from small to large. This order indicates an order of model selection performances to great extent, because underestimations usually take the major proportion of wrong selections when the sample size and the population signal-to-noise ratio (SNR, defined as the ratio of the smallest variance of the hidden dimensions to the variance of noise) decrease. Synthetic experiments by varying the values of the SNR and the training sample size N verify the theoretical results. 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Improvement of effort estimation accuracy in software projects using a feature selection approach

In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...

متن کامل

An investigation of model selection criteria for technical analysis of moving average

Moving averages are one of the most popular and easy-to-use tools available to a technical analyst, and they also form the building blocks for many other technical indicators and overlays. Building a moving average (MA) model needs determining four factors of (1) approach of issuing signals, (2) technique of calculating MA, (3) length of MA, and (4) band. After a literature re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012